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Abstract—This paper presents the design, fabrication, and
test results of a three-stage 155-GHz monolithic low-noise am-
plifier (LNA) fabricated with the 0.1- �m pseudomorphic (PM)
InAlAs/InGaAs/InP HEMT technology. With this amplifier in
a test fixture, a small-signal gain of 12 dB was measured at
155 GHz, and more than 10-dB gain from 151 to 156 GHz. When
the amplifier was biased for a low noise figure (NF), an NF
of 5.1 dB with an associated gain of 10.1 dB was achieved at
155 GHz. All the results above are referred to the monolithic-
microwave integrated-circuit (MMIC) chip with the input and
output waveguide-to-microstrip-line transition losses corrected.

Index Terms—InP, LNA, MMIC, pHEMT.

I. INTRODUCTION

M ILLIMETER-WAVE (MMW) low-noise amplifiers
(LNA’s) are very important components for smart

munitions, passive imaging, and radiometer applications.
The pseudomorphic (PM) high electron-mobility transistor
(HEMT) devices with both GaAs and InP materials have
demonstrated the high-gain and low-noise capability at

-band (75–110 GHz) and -band (110–170 GHz) fre-
quencies for hybrid integrated circuits [1]–[2]. High-gain
LNA’s have been successfully developed up to 140 GHz
[3]–[6], as referred in the summary of previously published
InP-based HEMT MMIC LNA results listed in [12]. For
the frequency range above 120 GHz, InP-based HEMT’s
are superior to GaAs-based HEMT’s for amplification due
to the higher electron peak-drift velocity in the InP-based
HEMT devices. The MMIC LNA’s fabricated with the
InP HEMT monolithic-microwave integrated-circuit (MMIC)
process have also achieved high gain and low noise-figure
performance at lower frequencies. Examples include a-
band (44.5 GHz) two-stage balanced LNA exhibiting 2.2-dB
noise figure (NF) with 20-dB associated gain [7], and a-
band four-stage balanced amplifier with a small-signal gain
of 23 dB from 75 to 110 GHz [8]. A two-stage cryogenically
cooled -band LNA also exhibited 0.7-dB NF at 95 GHz with
12-dB associated gain [9]. The motivation of this paper was
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Fig. 1. (a) InGaAs/InAlAs/InP PM HEMT device layer structure. (b) The
four-finger 30-�m HEMT device small-signal equivalent-circuit and noise
model at 0.9-V drain bias with a drain current of 8 mA.

to push the state-of-the-art by demonstrating higher frequency
performance in a monolithic LNA using the 0.1-m passivated
InP-based HEMT MMIC technology [11].

This paper describes the design, fabrication, and testing of
a 155-GHz monolithic three-stage amplifier fabricated with
the 0.1- m InAlAs/InGaAs/InP PM HEMT technology. A
small-signal gain of 12 dB was achieved at 155 GHz for the
MMIC chip. When this MMIC is biased for low NF, 5.1-dB
NF with 10.1-dB associated gain was obtained. This is the
highest frequency amplifier ever reported to date using three
terminal devices and defines the state-of-the-art of InP HEMT
MMIC LNA’s.

II. DEVICE FABRICATION AND CHARACTERISTICS

The three-stage 155-GHz MMIC LNA chip was fabricated
on a 2-in Fe-doped semi-insulating InP substrate grown
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Fig. 2. (a) Circuit schematic diagram. (b) Chip photograph (chip size: 2.5 mm� 1.6 mm). (c) The simulated small-signal gain and NF from 140 to
170 GHz of the 155-GHz InP-based HEMT MMIC LNA.

by molecular beam epitaxy (MBE) and employs 0.1-m
T-gate InP HEMT devices. The InAlAs/InGaAs/InP HEMT
(In Ga As channel) structure InP HEMT MMIC process
follows the procedures reported in [2], with additional wafer
passivation and stabilization bake steps introduced to the
MMIC process [11]. Fig. 1(a) shows the InP HEMT device
layer structure. The channel is a 150̊A PM 65% Indium
composition InGaAs layer, which provides superior transport
properties and high electron sheet densities. Typical room-
temperature Hall mobility of 10500–11 000 cm/V-s and Hall
sheet carrier concentration of 3.510 /cm were measured
on undoped-cap layer-calibration samples.

The devices are isolated using a combination of a wet
etch/boron implantation process, which provides better than 10
M resistance. Source and drain Ni/Au-Ge/Ag/Au ohmic
contacts alloyed at 400C using rapid thermal annealing,
provide a very low ohmic contact resistance of 0.06mm
and a source resistance of 0.2 mm. The 0.1- m gate
strips are fabricated with a bi-layer PMMA/PMMA-MAA
resist profile for metal liftoff and are offset by 0.6m from
the source pad. Prior to metallization, the devices are gate
recess etched to a predetermined current level. The target
device pinchoff voltage of 0.25 V with the voltage at a

(a) (b)

Fig. 3. (a) Three-dimensional view of the waveguide-to-microstrip-line tran-
sition, all dimensions are in mil (0.001 in). (b) Top view of the microstrip
line, D1 = 0:011in, W1 = 0:03in, D2 = 0:007in, W2 = 0:006in,
L = 0:0185in.

peak transconductance ( ) of 1000 mS/mm, are attained
with a unity current gain frequency of 200 GHz, and
a maximum oscillation frequency of 400 GHz. Device
reverse-breakdown voltage, defined at 0.2 and 1.0 mA/mm
reverse gate–leakage current are 1.5 and 2.5 V, respectively.
The devices are passivated with 750-Å silicon nitride de-
posited using PECVD. For the MMIC process, precision
NiCr resistors with a target resistance of 100 and
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Fig. 4. (a) Simulated and (b) measured through insertion loss and return loss of a pair of back-to-back transitions between 140 and 175 GHz.

silicon–nitride metal–insulator–metal (MIM) capacitors with
a target sheet capacitance of 300 pF/mmare used. After
processing the frontside, the wafers are lapped and polished to
75- m thickness. Ground via holes are wet-chemical etched
and 3.5- m gold is plated on the back side of the wafers to
complete the MMIC process.

III. D EVICE MODELING AND CIRCUIT DESIGN

The linear small-signal model for a 0.1-m gate PM InP
HEMT used in this 155-GHz LNA design was obtained
from curve fitting of the measured transistor small-signal

-parameters up to 50 GHz. The resulting equivalent-circuit
parameters are consistent with the estimated values based on
device physical dimensions and electrical/process parameters.
The four-finger 30-m-device small-signal equivalent-circuit
model and the noise model at 0.9-V drain voltage with 8-mA
drain current are shown in Fig. 1(b).

Fig. 2(a) shows the schematic diagram of this monolithic
amplifier, and Fig. 2(b) shows the chip photograph with the
chip size of 2.5 mm 1.6 mm. The 155-GHz amplifier is
a three-stage single-ended design. Each stage uses a four-gate
finger 30- m PM InP HEMT device for low gate resistance
and gate–drain capacitance for have high device gain at
the frequency. As can be obtained from the device model
in Fig. 1(b), the optimal noise reflection coefficient ( ),
normalized noise resistance (), and input reflection coeffi-
cients ( ) in the common source configuration with source
inductance from the two parallel grounding via holes (around
20 pH each, 10 pH total) at 155 GHz are 0.642175 , 0.088,
and 0.642 173 , respectively. The calculated minimum NF

is 2.8 dB at 155 GHz. The circuit design utilizes
a quasi-low-pass topology in the matching structures similar
to that used in the previously published 140-GHz MMIC
LNA [6]. This simple matching topology was chosen to
minimize the uncertainties in the analysis and modeling at
such a high frequency and, thus, reduce the design risk.
The input, output, and inter-stage matching networks are
all constructed by cascading high–low impedance microstrip

lines on a 75-m-thick InP substrate. Edge-coupled lines are
used for dc blocking and radial stubs are employed for RF
bypass. ShuntRC networks are included in the bias circuitry
to maintain amplifier stability. A wet chemical-etching process
is used to fabricate the backside via holes for grounding. The
design and analysis procedures of the monolithic chip design,
which include accurate active device modeling and full-wave
electromagnetic (EM) analysis of passive structures (SONNET
software) are documented in [10]. The simulated small-signal
gain and NF are plotted from 140 to 170 GHz in Fig. 2(c). It
shows a peak gain of 11 dB at 154 GHz with an NF of 5.9 dB.

IV. TRANSITION AND TEST-FIXTURE DESIGN

For testing, the InP amplifier chip is coupled to WR-5 wave-
guide at the input and output through a quartz-plane probe
structure. The probe was designed by utilizing a waveguide-to-
microstrip cross-junction structure, similar to the designs used
at lower frequencies (26–110 GHz) [13]. The full-wave EM
analysis software package HFSS1 was used for the design. A
schematic is shown in Fig. 3 along with transition dimensions.
The transition consists of a printed microstrip-line circuit on
0.003-in-thick fused quartz, a portion of which extends into
the WR5 (140–220 GHz) waveguide through an aperture in
the broad wall. The width of the quartz substrate is chosen to
eliminate waveguide modes in the microstrip cavity. In order
to have a low insertion loss and to be insensitive to mechanical
alignment error between the probe and waveguide, the probe
sectional lengths ( and ), widths ( and ), and the
back-short location are designed to have relatively large
values. The dimensions of the transition are given in the figure
caption. The simulated insertion loss and return loss of a pair
of back-to-back transitions are plotted in Fig. 4(a).

For determining the transition loss and match, two fixtures
were connected back-to-back with a 0.130-in-long 0.006-in-
wide microstrip line joining the waveguide. The measured fre-

1HFSS,HP 85180A High-Frequency Structure Simulator User’s Reference,
Hewlett-Packard Company, Network Measurement Division, Santa Rosa, CA
95403.
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Fig. 5. Photograph of the 155-GHz MMIC LNA mounted in the transition
test fixture.

Fig. 6. Block diagram of the scalar test system for measuring amplifier gain.
The calibrated attenuator is used to set the reference gain levels. The variable
attenuator is used for detector matching. All unlabeled waveguide is WR6
(110–170 GHz).

Fig. 7. Measured small-signal gain (referred to the chip) and return loss
of the 155-GHz MMIC LNA from 144 to 170 GHz (Vd = 1:4 V,
Itotal = 25 mA).

quency response from 144 to 170 GHz is shown in Fig. 4(b).
The insertion loss for a pair of back-to-back transitions is
approximately 2.5 dB and the return loss is about 15 dB from
152 to 168 GHz. The simulated insertion loss is very low since
lossless metal and materials are assumed to save computation
time. However, the optimal return loss is predicted to be at
about the right frequency. It is noted that in the real waveguide
assembly, especially at this frequency, there are a number

TABLE I
AMPLIFIER GAIN AND OUTPUT POWER OF THREE INPUT POWER LEVELS

(REFERRED TO THECHIP) AT 155 GHz (Vd = 1:4 V, Itotal = 25 mA)

Fig. 8. Block diagram of the noise measurement test setup.

TABLE II
MEASURED NOISE FIGURE AND ASSOCIATED GAIN AT 150, 155,AND 160 GHz

AT HIGH-GAIN BIAS CONDITION (Vd = 1:4 V, Id1;2;3 = 10 mA). THE

NUMBERS IN THE PARENTHESIS ARE ESTIMATED CHIP PERFORMANCE

ACCOUNTING THE 2.5-dB TRANSITION LOSS(2.5 dB ADDED

FOR GAIN AND 1.25 dB SUBTRACTED FOR NF)

of items which cannot be ideal, such as the-plane probe
alignment, substrate material fabrication tolerance, etc. All
these contribute to the discrepancy from theory to experiment.

V. AMPLIFIER MEASUREMENT

The 155-GHz LNA chip was mounted and tested in the
-band (WR5, 140–220 GHz) waveguide fixture described

in Section IV. A photograph of the complete fixture with
the MMIC chip mounted is shown in Fig. 5. The amplifier
gain and return losses were measured with a scalar-network-
analyzer test system based around a 120–170-GHz backward-
wave oscillator. A block diagram of the measurement setup
is shown in Fig. 6. A series of reference sweeps were taken
using a calibrated attenuator, and device-under-test (DUT) was
inserted in order to measure the amplifier gain and fixture
insertion loss. Fig. 7 shows the gain and input/output return
loss from 144 to 170 GHz. A peak gain of 12 dB occurs
between 153–155 GHz and the amplifier demonstrates more
than 10-dB gain from 151 to 156 GHz. The input and output
return losses are better than 5 and 10 dB, respectively. The
gain curve refers to the chip, which has had 2.5 dB added to
account for the transition loss. The total dc power consumption
is only 35 mW ( V, mA). The gain
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TABLE III
MEASURED NF AND ASSOCIATED GAIN THROUGH THE AMPLIFIER AND WAVEGUIDE TEST FIXTURE OF THE

155-GHz LNA AS A FUNCTION OF DRAIN CURRENT IN EACH STAGE (DRAIN VOLTAGE FIXED AT 1.4 V).
THE NUMBERS IN THE PARENTHESIS ARE ESTIMATED CHIP PERFORMANCEACCOUNTING THE 2.5-dB

TRANSITION LOSS (2.5 dB ADDED FOR GAIN AND 1.25 dB SUBTRACTED FOR NOISE FIGURE)

Fig. 9. The simulated and measured small-signal gain versus frequency (model:Vd = 0:9 V, Ids = 8 mA, measurement:Vd = 1:4 V, Ids = 10 mA).

compression effect was also roughly investigated under three
input power levels. Table I lists the output power and gain
at three input power levels under identical bias conditions at
155 GHz. As can be observed, the power gain of the amplifier
was compressed by about 1.5 dB when the input power was
increased from 18.75 to 8.75 dBm.

The spot noise temperature of the amplifier was measured
with a calibrated-noise test system normally used to measure
waveguide mixers. A block diagram appears in Fig. 8. The
system was calibrated using room-temperature and liquid-
nitrogen loads at the input horn of a subharmonically pumped
planar-Schottky-diode mixer with a double-sideband noise
temperature between 2000 K and 3000 K. The IF test system
is precalibrated to read noise power in degrees using room
temperature and 77-K coaxial loads. The reference plane for
the test set is the end of the IF cable, which attaches to the
output port of the mixer. During measurements, the mixer
noise and conversion loss (reference noise temperature in
Fig. 8) are determined by placing the hot and cold black-body
loads at the input of the WR5 horn attached to the mixer input
RF port. The horn is then moved to the output port of the
amplifier and the measurement is repeated. Ignoring amplifier
output mismatch, the gain and noise of the amplifier is simply
given by

The amplifier NF is then

The amplifier was then inserted between the mixer and
horn and the deembedded loss (now gain) and excess-input
noise temperature were backed out of the measured response.
No correction for amplifier-to-mixer mismatch was made.
The gain and noise were measured at three representative
frequencies: 150, 155, and 160 GHz. The output interme-
diate frequency was fixed at 1.5 GHz and the predetection
bandwidth for the spot noise measurement was 10 MHz. The
results, accounting for 2.5-dB of transition loss under a drain
voltage of 1.4 V with each stage drawing 10-mA current are
listed in Table II. An NF of 6.8 dB with associated small-
signal gain of 11 dB was measured at 155 GHz. Two amplifiers
were measured, with one of the chips having approximately
1 dB lower NF than the other. Optimum bias conditions for
minimum noise turned out to be 1.4-V drain bias for all three
stages with 3, 5, and 7 mA of current for stages 1, 2, and
3, respectively. Under these conditions, from flange to flange,
6.4-dB NF (964 K) with 7.6-dB associated gain (NF of 5.1
dB, and 10.1-dB gain at the chip assuming 1.25-dB loss per
transition) is obtained, as shown in Table III.

Fig. 9 is a plot of the simulated and measured small-signal
gain from 144 to 168 GHz on the same graph. As compared
with the simulated results, both the measured small-signal gain
and NF agree to the data reasonably well below the peak gain
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frequency 155 GHz. However, the simulated gain decreases
faster than the measured one above 155 GHz, and the NF
increases rapidly in simulation at 160 GHz. It is also noted that
the data presented in this paragraph were taken at the drain
bias of 1.4 V, while the models were derived via the HEMT
device - and noise-parameters under 0.9-V drain voltage with
a fixed drain current of 8 mA. Some difference in small-signal
gain was expected (0.5–1 dB per stage).

VI. SUMMARY

We have described the design, structure, and measure-
ments of a 155-GHz monolithic LNA using 0.1-m PM In-
GaAs/InAlAs/InP HEMT technology. The three-stage single-
ended 155-GHz monolithic LNA exhibits a small-signal gain
of 12 dB at 155 GHz, and more than 10 dB of gain from 151
to 156 GHz. An NF of 5.1 dB with 10.1 dB associated is also
achieved under a low current bias condition at 155 GHz. To the
best of our knowledge, this is the highest frequency amplifier
ever reported using three terminal devices. This is also the
best reported performance for an amplifier at this frequency
and the first measurements of amplifier noise above 140 GHz.
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